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ABSTRACT: Stonn trequency estimates (e.g., maximum precipitation or flow probabilities) allow engineers and hydrolo-
giststo assess risks associated with their decisions during the design, construction, and operation of water resource projects.
Stann trequencies for the future are often estimated directly trom past historical records of sufficient length. The estimation
requiresno detailed knowledge of the area's meteorology. but presumes it remains unchanged in the future. However, the
climate seldom remains static. Numerous climate forecasts of meteorology probabilities over extended periods are now
availableto the water resource engineer and hydrologist. It is possible to use these meteorology forecasts directly in the es-
timationof stonn trequencies trom the historical record. It is more desirable to do so now than at any time past, since mete-
orology forecasts have been improving and are now better than their predecessors. A heuristic approach is defined here to
estimate stonn trequencies that recognize forecasts of extended weather probabilities. Basically, those groups of historical
meteorology record segments matching forecast meteorology probabilities are weighted more than others, during the estima-
tionof stonn trequencies. (Affiliated groups of hydrology record segments may be similarly weighted for hydrological esti-
mation;e.g., flood frequency estimation.) An example trequency estimation of maximum flow is made using currently avail-
able agency meteorology forecasts in the US and Canada.
KEY TERMS: stonns, exceedance trequencies, weather forecasts. probability, estimation, climate.

STORM FREQUENCY ESTIMATION

Since storm frequencies are unknown, they are estimated trom the historical record, which is assumed ergodic and
treated as a "random sample." Successive observations are considered identically distributed and equally likely to occur
(both in the past and future). Likewise, the observations must be defined so they can be considered as independent of each
other. (Two successive storms occurring very closely may result in a high degree of dependence of the second on the first.)
Temporal dependence can be minimized by defining long event inter-arrival times or record pieces. For example. annual
maximum floods or rainfalls (inter-arrival time on the order of a year) are often taken as time independent, as are I-year rec-
ord segments.

Storm frequencies or "exceedance probabilities," P[X ~ x] can be estimated directly from the historical record. Sup-

pose all values, Xi' in a random sample of annual maximums ( Xi' i = I, ..., n) are ordered trom largest to smallest to de-

fine the ordered variable values (YI. I = I. ..., n). where Y, = xi(l) and i(f) is the number of the value in the unordered

sample corresponding to the I!!!order. There arc several methods to estimate exceedance probabilities from annual exceed-
ance series (Chow. 1964);without loss of generality, the popular "Weibull" method is used here as an example:

. e I (

p[X ~ Y{] = ~ = - LI,
n+1 n+li=1

e = I. n (I)

The caret. "/\," denotes an estimate of the characteristic named underneath. Other methods also could be used.
This estimator is called "non-parametric" since knowledge of the underlying distribution and its parameters is not re-

quired. Other estimators (called "parametric") derive from knowledge (or supposition) of the type of underlying distribution.
Functions of a random sample may be used as estimators of the parameters of the underlying distribution. Several of interest

here are the "sample mean," jJ , "sample variance," a-2, and "sample skew coefficient," rjJ:

I n

jJ = - LXi
n i=1

(2)
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a-2
1 n

= n _ 1~(Xi - {If1=1
(3)

ift = (n-l)(n-2L~(Xi - jJ)3/(I;i2r (4)

They are estimators of distribution mean, f1 , variance, (}"2,and skew coefficient, If/, respectively. Other estimators (Kou-
trouvelis and Canavos, 1999)also could be used with no loss of generality.

EXAMPLE STORM FREQUENCIES

The daily flow records for the Maumee River were searched for 1949-1995; the annual maximum daily flows are given in
Table 1. The exceedance frequencies for the annual maximum flows were estimated with Eq. (I) and plotted in Figure 1as
"non-parametric sans forecast." The log-Pearson Type III distribution also was fit to the data and appcars in Figure 1 as
"parametric sans forecast." It results from supposing the natural logarithms of the data in Table 1 [Z = In(X)]are distributed
as a three-parameter gamma distribution:

1

[
~

]
a-I e-z~c,

fz (z) = IPI r( a) P
c::oz<oo (P>O) -oo<z::oc (P<O) (5)

where fz (z) is probability density, r(a) is the gamma function, and a, P, and c are distribution parameters. Parameter

estimates are given in terms of Eqs. (2H4) defined on the natural logarithms of the data (USWRC, 1967) by replacing ex-
pected values from Eq. (5) with sample moments:

In 1

Eq
pi)

,
a = (2jiftt

/3 = I;i2 ift/2
c = {I - 2I;i2 lift

(6)

MATCHING PROBABILITY FORECASTS
Co
19

The probability of any event A, P[A], can be inferred with the estimator, P[A], defined as the number of observations

in the random sample for which A occurs (i.e., for which the event A is true), nA, divided by the total number of observa-
tions in the sample, n :

pr.

P[A] =
nA

n = .!. Ll
n il A

(7) wJ

Ec

Table I. Annual Maximum Daily Flow for the Maumee River Basin8 (35.31 cfs = 1m3s'I).
Year Flow Year Flow Year Flow Year Flow

cfs) (cfs) (cfs) (cfs
1949 45100 1961 53500 1973 40000 1985 91100
1950 92400 1962 45800 1974 69600 1986 36200
1951 53100 1963 35200 1975 49400 1987 23500
1952 53100 1964 46800 1976 68500 1988 22900
1953 33200 1965 36200 1977 64000 1989 42700
1954 23400 1966 79000 1978 86400 1990 82000
1955 45900 1967 48900 1979 53400 1991 86700
1956 42700 1968 56900 1980 44400 1992 54000
1957 62400 1969 67500 1981 85400 1993 65000
1958 29700 1970 33300 1982 113000 1994 63900
1959 80000 1971 38900 1983 54200 1995 51000
1960 44800 1972 46900 1984 51300

8atWaterville, Ohio, Lat. 41:30:00, Long. 83:42:46 (basin area = 16,394.7 km2= 6330 mi2).
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Figure 1. Annual Maximum Daily Maumee River Flow Exceedance Frequency (35.31 cfs = 1m3s'I).

In Eq. (7), the sum is taken over all i (members of the random sample) for which A occurs, denoted as iiA. The estimate in
Eq. (7) is seen as the "relative frequency" of A in the random sample. Croley (1996, 1997,2000) biased samples, by multi-
plying observations by non-negative weights, w;, to calculate probabilities matching others' multiple probability forecasts:

Consider, for example, that others' forecasts of event probability can be interpreted in m -1 probability equations (Croley,
1996) and forecasts of most-probable events can be interpreted in u probability inequalities (Croley, 2000). They are ex-
pressed in terms of relative frequencies over a random sample as follows:

P[Ak 1 = ak,

p[Ak] ~ ak'

k = 2,..., m

k = m + 1, . .. , m + u
(10)

where ak are the forecast probabilities. Equation (8), when applied to match the forecasts of meteorology probabilities in
Eq. (10) and added to Eq. (9), yield a system of equations to be solved for the weights:

n

LW; = n
;=\

L Wi = n ak '
ilAk

L Wi ~ n ak ,
ilAk

k = 2,..., m (11)

k = m+I, ..., m+u

Equivalently,

k = 1, ..., m

(12)

k = m+I, ..., m+u
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. 1 LP[A] = - wi (8)
n ilA

n

LWi = n (9)
i=1

n

Lak .W = ek',/ ,
i=1
n

Lak .w. ek,,/ /
i=1



where au = 1 for k = 1 or for k > 1and i I Ak [inclusion of the i!!!random sample value (i!!!event or segment of the histori-

cal record) in the event of the ~ probability statement]; otherwise it is zero. Also. ek= n for k = 1 and ek = n ak for k > 1.

Any weights that satisfy Eq. (12) yield weighted-sample relative frequencies of events that match forecasts of meteorology
probabilities. These weights also yield other corresponding biased sample estimators; e.g.. Eqs. (lH4) become:

1 l
i>[X > YlJ = _ 1 I wi(k)'

n+ k=1

1 n- " w. x.£... 1 1

n i=1

e = 1. n

A

0-2
1 n

= n_IIw;{xi -A)21=1

(13)

. n n /If = 3 3
(n -I)(n - 2) i~ W;{Xi - jJ) (JdT)

Generally. some of the equations in (II) or (12) may be either redundant or infeasible (non-intersecting with the rest. re-
sulting in no solutions) and must be eliminated. (If the number of equations is greater than the number of weights. then some
of the equations must be either redundant or infeasible.) In practice. one could assign each equation in (II) or (12) a "prior-
ity" reflecting its importance. [The highest priority is given to the first equation in (I I) or (12) corresponding to Eq. (9),
guaranteeing that all relative-frequencies sum to unity.] Each equation is compared to the set of all higher-priority equations
and eliminated ifredundant or infeasible. Thus Eq. (12) can always be reduced so that the allowed number of forecasts of
meteorology probabilities is less than or equal to the number of historical record pieces (sample size). If less. then there are
multiple solutions to Eq. (12). and a choice must be made as to which solution to use.

OPTIMUM SOLUTION

If there are multiple solutions to Eq. (12). the identification of the "best" requires a measure or objective function for
comparing them. Solutions of Eq. (12) with larger values of this measure can be judged "better" than those with smaller val-
ues. One such measure is the probability of a selected event. If the objective function is always a statement of maximizing
or minimizing a probability, then it can be added to the problem statement of Eq. (10) to yield an optimization problem.
Objective functions that use probability statements can be expressed in the general form:

n

max"a o .W~ ,I I
i=1

(14)

where ao,i are defined similarly to Eq. (12) in which the objective function is equation O. The problem of solving Eq. (12)

can now be formulated as an optimization. maximizing the objective function subject to a "constraint set" of equations:

k = 1. m
(15) r

r
k = m + 1. ..., m + u

i = 1. n
tJ
d
51
p:
o.
II

Equations (15) are amenable to standard "linear programming" optimization techniques. An algebraic procedure. termed
the "Simplex" method. has been developed (Hillier and Lieberman. 1969) which progressively approaches the optimum so-
lution through a well-defined iterative process until optimality is finally reached. Croley (2000) describes a procedure for
applying the Simplex method in a two-stage optimization. The first stage finds a feasible solution to the constraint set in Eq.
(15) and the second searches systematically from that feasible solution to the optimum solution. Multiple optima are possi-
ble. depending upon the objective function and the constraint set.
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max Iao .w. subject to,I 1
i=1

n

Iak,iwi
= ek'

i=1
n

Iak,iwi $; ek.
i=1

w. 2: O.1



NOAA AND EC FORECAST EXAMPLE

The estimates of Figure I are modified by incorporating selected forecasts trom the National Oceanic and Atmospheric
Administration (NOAA event probability forecasts) and Environment Canada (EC most-probable event forecasts); see Croley
(1996, 1997, 2000). The forecasts are summarized in Figure 2, in priority order with the earliest-made forecasts first (NOAA

equalities precede EC inequalities), precipitation before temperature second, and chronologically third. In Figure 2, Tg = air

temperature for period g and Tg,r is the y-quantile for period g air temperature estimated from a reference historical pe-

riod (usually 1961-90 or 1963-93) such that:

P[Tg ::; tg,rJ = y (16)

Likewise, precipitation, Qg, and its quantiles, Bg,r ' are defined similarly to Eq. (16).

Note that the precipitation forecasts in Figure 2 are for high precipitation with only one exception (the EC SON forecast).
The objective in matching these forecasts is therefore (arbitrarily) taken as maximizing the probability that precipitation over
the period November 1999-July 2000 will be in the upper third of its historical range (determined from 1961-1990):

max P[QNoV'99-JUI'00 > BNov-Jul,0.667 ] (17)

Daily precipitation and air temperature data trom 32 s~ationswere assembled over 1948-1995 for the Maumee River ba-
sin. (Widespread meteorology observations began in 1948.) The data were used to determine the Thiessen-averaged air
temperature and the total precipitation, for the periods shown in Figure 2 and Eq. (17). According to the agencies, the NOAA
temperature and precipitation forecasts and the EC precipitation forecasts are defined relative to historical reference quantiles
estimated over the 1961-1990 period. Likewise, the EC temperature forecasts are defined relative to historical reference
quantiles estimated over the 1963-1993 period. By ordering data trom these periods, the reference quantiles are estimated.

Consider the objective function of Eq. (17) and the forecasts of Figure 2 to apply prior to and through the beginning of
each year in the sample. (The Maumee River annual maximum flow typically occurs as spring snowmelt.) In other words,
each year of record is to be weighted to reflect the objective of Eq. (17) and the beginning winter as forecast in Figure 2 (a
total period trom September of the year before through the following August). For example, the first value in Table I for
calendar year 1949 corresponds to the objective and forecast values for September 1948-August 1949. The coefficients in
Eq. (15) are derived from the data set, Figure 2, and Eq. (17); see Croley (2000). In the ensuing optimization, 19 weights are
zeroes, indicating that some of the historical record is not used. However, all but the last three equations in Figure 2 are used
(corresponding to all forecasts except the EC most-probable JJA air temperature forecast).

Climate-biased storm frequencies for the annual maximum daily flow can now be estimated by applying these weights to
the data in Table I by using Eq. (13). Only results for the fitted Log-Pearson Type III distribution are given in Figure 1 (to
simplify the presentation) as "parametric with forecasts." Compare the Log-Pearson Type III distribution derived trom the
parametric estimates without the forecasts to that made with the forecasts. There is a large shift, making all flows more likely
to be exceeded.

SUMMARY AND OBSERVATIONS

The methodology described herein allows one to recognize changing climate in the estimation of storm frequencies, re-
moving one of the worst assumptions associated with this, which is that future probabilities are the same as the past. Existing
forecasts of meteorology probabilities can be used to bias storm frequency estimates for a changing climate. The methodol-
ogy is adapted from earlier work that uses forecasts of meteorology probabilities to derive forecasts of consequent hydrology
probabilities in an operational hydrology approach. The linear objective function used here enables incorporation of an event
probability into the objective, use of existing optimization techniques, and direct inclusion of non-negativity constraints.

The example presented here may be more representative of storm trequency estimation in an operational setting rather
than in a design setting. Climate-biased storm frequencies were estimated by preserving meteorology forecasts. These con-
ditions are current and are not generally regarded as applying over a very long time into the future. The resulting biased
storm frequencies can only be considered applicable over the same time period as the meteorology forecasts or other event
probabilities used to condition them. The example given here applied over the next several months, appropriate for use in an
operational setting. If probabilities can be defined (estimated) corresponding to climate shifts expected from the present for-
ward, then the resulting biased storm frequencies could be used in a design setting.

Complete software, in the form of an easy-to-use interactive WindowsTMgraphical user interface, and worked examples
are available free of charge over the World Wide Web. The software, examples, and tutorial materials may be acquired in a
self-installing file by visiting the web site entitled: htto://www.glerl.noaa.gov/wr/OutlookWeights.htmland downloading.
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Figure 2. Mixed NOAA and EC Meteorology Probability Forecasts Made in September 1999 over the Maumee River Basin.
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P[QOND'99 < eOND,0.333]
0.283 (I) P[TFMA,OO :::; fFMA,0.333] = 0.333

P [QOND'99 > eOND,0.667] = 0.383

(21)

(2) P[TFMA,OO > fFMA,0.667] = 0.333 (22)

p[ QNOJ'99 :::; eNDJ,O.333J = 0.273 (3) P[TMAM,OO :::; fMAM,0.333] = 0.333 (23)

p[ QNOJ'99 > eNOJ,0.667J = 0.393
(4) P[TMAM,OO > fMAM,0.667] = 0.333 (24)

P[QOJF'99 :::; eOJF. 0.333 ] = 0.273
(5) p[QSON'99 :::; eSON,0.333J :::; 0.333 (25)

p[QOJF'99 > eOJF,O.667J = 0.393 (6) p[eSON,0.333 < QSON'99 :::;eSON,0.667J ;:::0.334 (26)

p[ QJFM'OO:::;eJFM,0.333J = 0.133 (7) p[QSON'99 > eSON,0.667J :::; 0.333 (27)

P[QJFM '00 > eJFM, 0.667 ] = 0.533
(8) P[QJJA'OO :::; eJJA, 0.333] :::; 0.333 (28)

P[QFMA '00 :::; eFMA,0.333 ] = 0.273
p[e . ](9)

JJA,0.333 < QJJA'OO :::; BJJA,0.667 :::; 0.334 (29)

p[QFMA'OO > eFMA,0.667J = 0.393 (10) P[QJJA '00 > eJJA, 0.667 ] ;::: 0.333 (30)

p[QMAM'OO :::; eMAM,O.333J = 0.273 (I I)
P[TSON'99 :::; fsoN,o.m] :::;0.333 (31)

p[QMAM'OO > eMAM,O.667J = 0.393
p[. .

(12)
TSON,0.333< TSON'99 :::; TsON,0.667] :::;0.334 (32)

P[TONO'99 :::; fONO,0.333] = 0.333 (13)
P[TSON'99 > fSON,0.667] ;:::0.333 (33)

P[TONO'99 > fONO,0.667] = 0.333 (14)
p[TOJF'99 :::; fOJF,0.333] :::; 0.333 (34)

p[ .
P [TNOJ '99 :::; f NOJ, 0.333] = 0.333 (15)

TOJF, 0.333 < TDJF'99 :::; fOJF,0.667] :::; 0.334 (35)

P[TNOJ'99 > fNOJ.0.667]= 0.333 (16)
p[TOJF'99 > fDJF.0.667] ;:::0.333 (36)

P[ToJF'99 :::; fOJF,0.333] = 0.273 (17)
P[TJJA,oo :::; fJJA,o.m] ;::: 0.333 (37)

p[.
p[TOJF'99 > fOJF.0.667] = 0.393 . (18)

TJJA.0.333 < TJJA,oo :::; fJJA,0.667] :::; 0.334 (38)

P[TJFM,OO :::; fJFM.o.m] = 0.263 (19)
P[TJJA,oo > fJJA,0.667] :::;0.333 (39)

P[TJFM,OO > fJFM.0.667] = 00403 (20)


